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1. Introduction

Fluidized bed technology is widely used in many engineering applications dealing with heat and
mass transfer processes between solids and liquids. Fluidized beds are commonly used in industry
for various purposes, e.g., catalytic reactions, gasification and combustion of solid fuels, drying of
bulk materials, calcination and other treatments of ores, etc.

The rate of heat and mass transfer in fluidized beds depends on the fluidizing velocity; the
higher the velocity through the bed, the more intensive the heat and mass transfer to the fluidized
particles. In many traditional types of devices the fluidizing velocity u is restricted by the maximal
value ut that which would carry all the solid particles out of the device. Alternatively, when the
outlet is blocked by a porous cap, in the regime where u > ut all the solid particles pack at this
cap. For several industrial processes, such as catalytic cracking of oil, coal combustion and gas-
ification, calcination of alumina and others (see Reh, 1986; Comtractor and Chaoki, 1990), where
high rates of heat and mass transfer are required, standard fluidized bed devices are not suffi-
ciently effective and circulating fluidized beds, also known as fast beds, are used extensively. In
fast fluidized beds, the conveyed material is returned to the bottom of the bed. Such fast fluidized
beds have certain disadvantages as compared to ordinary fluidized beds, namely, the additional
cost for the solid particles return scheme, the smaller residence time, and the restriction on their
productivity imposed by the transport velocity. A wide review of fluidized beds is given by
Jackson (2000).
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A Superfluidized Bed (SFB) process has been suggested by Fichman et al. (1995), which over-
comes some of these shortcomings. In the SFB process a special vibrating grid is placed at the
top of the bed, preventing the particles from leaving the device, no matter how high the carrier
gas velocity. If the grid does not vibrate a porous plug of particles may form beneath it at
high gas velocities, thus reducing the intensity of heat and mass transfer processes in the
bed. The vibrations of the grid prevent the formation of the porous plug by sending the particles
back into the fluidizing chamber, and thus retaining the beneficial properties of the fluidized
bed. Along with the advantages of the SFB process there is an obvious disadvantage of the added
complexity of the vibrating grid. Hence, a study of a non-vibrating fluidized bed is of practical
interest.

Even when the grid does not vibrate, there are situations when no stable plug is formed in the
bed confined by the grid. This usually happens when the gas velocity is sufficiently high to carry
upward single particles, but not high enough to carry clusters of particles, or sustain a stable
inverted packed bed.

The present study investigates particle accumulation at the confining grid in the absence of
vibrations. During this process the fluidized bed coexists with a packed bed on top of it. Experi-
mental data are presented and a model for the confined bed process is suggested.
2. Experimental results

The experimental system is shown schematically in Fig. 1. It consists of a closed loop, a trans-
parent fluidized bed, and a centrifugal blower that circulates the air through it. The inner diameter
of the bed is D = 0.11 m. The blower is driven by a DC motor power with variable speed drive,
and can provide a maximal flow velocity inside the bed of 26 m/s. The velocity of the gas is mea-
sured in the connecting tube by a thermo-anemometer, from which the velocity in the bed is
calculated.

The fluidized bed is formed inside a Plexiglas tube of 11 cm inner diameter. Two horizontal
grids are placed inside the tube, and the space between them constitutes the confined bed chamber.
The position of the bottom grid is fixed. The upper grid can be moved up and down, thereby
changing the height, H, of the confined bed. Water manometers measure the pressure at two
points in the connecting tubes, before and after the confined bed chamber. The granular material
in the bed consists of small plastic spheres with the diameter d = 4.1 mm and the density
qp = 1100 kg/m3.

The experiments were performed as follows. A massM of spheres, comprising the granular bed,
was loaded into the transparent chamber such that the initial height of the layer of the spheres at
rest, i.e., the height of the initial packed bed, was h0. The valve in the tube was gradually opened
and the velocity of the air slowly increased. A maximal flow velocity was thus reached. The flow
rate was then slowly decreased to zero. The part of the run in which the flow velocity is increased
is termed as the loading period, and that in which the flow is decreased is the unloading period.
The gas flow velocity and the pressure drop were measured during the loading and the unloading
periods, and the state of the particles in the bed was recorded by a video camera. The various runs
vary in their height of the confined bed, H, the height of the packed bed, h0, and the maximal flow
velocity attained.



Fig. 1. Schematic of experimental set-up.
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During the loading part of the experiments the bed passes through three stages, as illustrated in
Fig. 2. At first the solid particles form a fluidized bed and do not interact with the upper grid, Fig.
2a. As the flow velocity increases, the bed expands, until the uppermost particles begin to touch
the upper grid and stick to it, and the second stage begins. Now, part of the solid particles form a
plug at the upper grid, whereas the other particles are fluidized in the space below the plug (Fig.
2b). The void fraction in the plug differs significantly from that in the fluidized part of the bed, and
the boundary between the two regimes is easily observed (Fig. 2b). With further increase in the
fluid velocity more particles reach the plug until all the particles in the bed gather at the upper
grid (Fig. 2c), leading to the third stage, which is the inverted packed bed. This inverted packed
bed state is now insensitive to moderate decrease or increase in the speed of the flow, and the void



Fig. 2. Photographs of different states of a confined fluidized bed (plastic spheres, h0 = 10d, d = 0.0041 m): (a) flu-
idized bed state; (b) plug state; (c) inverted packed bed state.
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fraction in the plug is constant. The pressure drop over the bed and the velocity of the air flow
through the bed are measured for different bed heights, h0, and different confined bed heights,
H. The measured values are shown in Figs. 3 and 4. Fig. 3 is for h0 = 0.0205 m and a velocity
range chosen such that the inverted packed layer at the upper grid contains all the particles in
the bed. Fig. 3 is for h0 = 0.041 m and a velocity range determined by the maximum output of
the blower.

As seen in Fig. 3, the velocity corresponding to the formation of the inverted packed layer is
independent of the height of the bed, H, and for the plastic spheres of diameters of 4.1 mm used
in the experiments this value is 11–12 m/s. Another feature shown is that during the velocity
decrease (the upper branch of the curves) the pressure drop is higher than during the increase,
shown in the lower branch. Hence, the pressure depends not only on the velocity but also on
the history of the process. i.e., whether it is measured during the loading (the lower branch) or
unloading (the upper branch). It is also noted that the upper branches for all the curves presented
in Fig. 3 are practically the same, and depend just on the size of the plug formed.

Fig. 4 presents the pressure drop for a thicker bed, h0 = 0.041 m. The maximal pressure drop
here is restricted by the maximal output of the blower, which comes out to be Dpmax = 800 Pa.
The packed bed stage has not been reached for this deeper bed. However, all of the curves in
the Fig. 4 also have two branches and show dependence on the history of the loading, as in
Fig. 3.

During the loading stage the plug of the particles at the upper grid grows with time and with the
increase in velocity. During the unloading stage the inverted packed part of the bed remains
packed and does not change. Since most of the pressure drop takes place in the packed part of



Fig. 3. Pressure drop across a bed of plastic spheres (d = 0.0041 m, h0 = 5d = 0.021 m) versus gas velocity;
experimental and theoretical results. Solid squares—experimental data, thin curves—predictions of the model based
on the Gibilaro et al. (1985) approximation, thick curves—predictions of the model based on the Richardson and Zaki
(1954) and Ergun (1952) approximations. (a) H = 0.07 m, (b) H = 0.12 m, (c) H = 0.165 m.
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the bed, the difference between the two branches in the figures can be qualitatively explained by
the differences in heights of the packed parts of the bed. Some more comments are presented in
Section 4.
3. Theoretical model

To simplify the analysis a constant mean void fraction, e, is assumed for each regime of flow. As
seen in Fig. 5, the particles may either stay at the bottom of the bed, float in the fluidized part of
the bed, or be inverted packed below the upper grid. Each of these regions is assumed to have its
own constant average void fraction. Due to this assumption, we may use known empirical rela-
tions for the pressure drop in each region. Below we present several existing empirical models



Fig. 4. Pressure drop across a bed of plastic spheres (d = 0.0041 m, h0 = 10d = 0.041 m) versus gas velocity;
experimental and theoretical results. Solid squares—experimental data, thin curves—predictions of the model based on
the Gibilaro et al. (1985) approximation, thick curves—predictions of the model based on the Richardson and Zaki
(1954) and Ergun (1952) approximations. (a) H = 0.07 m, (b) H = 0.12 m, (c) H = 0.165 m.

962 L. Moldavsky et al. / International Journal of Multiphase Flow 31 (2005) 957–967
and relationships and show how they can be combined to form a theoretical model for the con-
fined fluidized bed.

Since the mass of a bed does not change in each experiment the mass conservation condition
may be written in terms of the confined bed�s height hf and e

for a fluidized bed:
hfð1� eÞ ¼ h0ð1� e0Þ ¼ 4M=qppD
2 ð1Þ
for a confined bed:
hfð1� eÞ þ hpð1� e0Þ ¼ h0ð1� e0Þ; ð2Þ

where the subscripts f and p denote fluidized bed and the plug region, respectively and subscript 0
refers to the properties of the whole bed in the packed regime.

A fluidized bed can exist if the height, hf is less than the distance between the grids. When the
particles of the fluidized bed approach the upper grid they begin to ‘‘stick’’ to it forming a plug.
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Fig. 5. Schematic of the different states of a confined fluidized bed: (a) fluidized bed; (b) packed bed; (c) inverted packed
bed.
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The height H of the bed is the sum of the heights of the fluidized and plug regions (inverted bed)
(see Fig. 5b)
hf þ hp ¼ H ð3Þ

There are several empirical expressions for the calculation of the pressure drop across the bed.

For a bed of packed spheres with e 6 0.4 the Ergun equation
DPE ¼ hp 150
ð1� eÞ2

e3
lu

d2
þ 1.75

1� e
e3

lu2

d

" #
; ð4Þ
with l being the air viscosity, gives reliable results. Richardson and Zaki (1954) have shown that
the following simple expression:
u
ut

¼ en ð5Þ
could be used to relate the sedimentation or fluidization velocity, u, the void fraction e, and the
terminal particle velocity, ut in the fluid. The terminal velocity may be found equating the drag
force on a single particle to its effective weight
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CD
qu2t
2

pd2

4
¼ pd3

6
ðqp � qÞg; ð6Þ
where g is the acceleration due to gravity and for large Reynolds numbers CD � 0.44.
The exponent n in Eq. (5) was given by Khan and Richardson (1989) in terms of the ratio of the

particle-to-vessel diameter (d/D) and the Galileo number, Ga = d3qg(qp � q)/l2
4.8� n
n� 2.4

¼ 0.0043Ga0.57 1� 1.24
d
D

� �0.27
" #

. ð7Þ
Expressions (5)–(7) enable to calculate the void fraction in the fluidized bed for a given velocity.
The pressure drop across the bed is found by equating it to the weight per unit area of the particles
in the fluidized bed
DP f ¼ qpð1� eÞghf . ð8Þ
There were many attempts to derive a single correlation which is valid for the wide range of
void fractions from dilute fluidized suspensions and up to the packed bed state. For a discussion
of this topic see the paper by Khan and Richardson (1990). One of such correlations was sug-
gested by Gibilaro et al. (1985)
DP ¼ 17.3

Re
þ 0.336

� �
qu2H
d

ð1� eÞe�4.8 ð9Þ
This correlation had been claimed to be applicable in a wide range of the void fractions, e from 0.4
to 1, covering fluidized suspensions as well as fixed beds of height H. This simple correlation does
not contain any fitting parameters and is independent of the bed diameter.

Below we show how to use the above correlations to calculate the velocity–pressure relationship
for all three regimes. For the first stage (fluidized bed) the pressure drop across the bed is equal to
the bed weight per unit area. Combining (1) and (8) one obtains
DP f ¼ qpð1� e0Þgh0. ð10Þ
This pressure drop is independent of the gas velocity until the latter changes between the minimal
fluidizing velocity, umf and the terminal velocity, ut. This is true if the vessel containing the bed is
unconfined from above. In our case, Eq. (10) holds for gas velocities smaller than the critical
velocity, ucr, i.e., the one at the onset of plug formation on the upper grid. The latter value char-
acterizes the transition from the first stage (fluidized bed) to the second one, where the fluidized
region coexists with the plug region. This transition happens when the fluidized bed fills the whole
volume between the grids i.e.,
hf ¼ H . ð11Þ

This condition may also be derived from Eq. (3) for the confined fluidized bed by setting hp = 0.
We define a critical void fraction as the one corresponding to the onset of plug formation. Using
mass conservation, Eq. (1), together with Eq. (11) the critical void fraction is given as
ecr ¼ 1� ð1� e0Þh0=H . ð12Þ
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Substitution of this value into Eq. (5) yields the critical velocity predicted by the model of Rich-
ardson and Zaki (1954) in the form
ucr ¼ encrut. ð13Þ

Another prediction of the critical velocity may be obtained from the model of Gibilaro et al.

(1985). Eqs. (9) and (11) yield after some algebra the following expression:
gqp ¼ 17.3þ 0.336
qucrd
l

� �
lucr
d

e�4.8
cr ð14Þ
The solution of this equation yields ucr.
We assume that for u > ucr (or e > ecr) the plug stage begins. In this stage, the pressure drop

across the bed is equal to the sum of the pressure drops across the fluidized and inverted packed
parts of the bed
DP ¼ DP f þ DP p. ð15Þ

To use this expression one needs to calculate the heights, hf, hp, and the void fraction, e within the
fluidized part of the bed (see Fig. 3b). For the Richardson and Zaki model, it may be done by
solving a system of three equations (2), (3), (5) for a fixed velocity, u and a given n (calculated
from Eq. (7)). After that the first term in Eq. (15) is calculated from Eq. (7) whereas the second
one from Ergun�s correlation, Eq. (4). The second stage, where the fluidized and plug regimes
coexist, terminates when u = ut, and all the particles are amassed in the plug.

In order to calculate the pressure drop in Eq. (15) on the basis of the correlation of Gibilaro
et al. (9), it is convenient to equate Eqs. (8) and (9) leading to
qpg ¼ 17.3

Re
þ 0.336

� �
qu2

d
e�4.8. ð16Þ
This equation may now be solved to give e. For the calculated e, the heights of the fluidized and
packed parts of the bed may be easily calculated from Eqs. (2) and (3). After that, both terms in
the right-hand-side of Eq. (15) may be calculated on the basis of Eq. (9), using different values of e
corresponding to the respective regimes. It is worth mentioning that the correlation of Gibilaro
et al. (9) yields the same terminal velocity for large Reynolds numbers as Eq. (6).

In the third stage (inverted packed bed) we used the two models for the description of the
velocity–pressure dependence, namely those of Ergun (Eq. (4)) and Gibilaro et al. (Eq. (9)). In
the following section we compare the above mathematical models with our experimental results.
4. Comparison between experiments and theoretical results

To verify the applicability of the above mathematical models we adapt them to our experimen-
tal conditions. Both models predict that the third stage of the inverted packed bed begins when the
superficial velocity u reaches the terminal velocity ut. This statement is in good agreement with the
experimental data presented in Fig. 4. One can see that all three curves describing the loading pro-
cess terminate practically at the same point of the pressure-velocity diagram. The maximal pres-
sure achieved in these experiments, when all particles were collected on the upper grid, is about
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650 N/m2 (see Fig. 4). This pressure is associated with the packed bed state when e = e0 Since Eqs.
(4) and (9) for a packed bed are very sensitive to the value of the void fraction e, we used e0 as an
adjustable parameter. Specifically, e0 was chosen as the one corresponding to
DP ¼ 650 N=m2 ð17Þ

where DPt is the pressure drop calculated for the terminal gas velocity, u = ut, and the void frac-
tion as that of the packed state e = e0. Using directly measured parameters characterizing our
experimental conditions, namely g = 9.8 m/s2, d = 0.0041 m, qp = 1100 kg/m3, q = 1.2 kg/m3,
l = 0.18 · 10�4 N s/m2, D = 0.11 m, one obtains from Eq. (6) the terminal velocity as
ut � 10.5 m/s. Substituting this value together with the height of the packed layer, 5d into Eqs.
(4) and (9), respectively, one obtains two different relationships for DPt. Substitution of these rela-
tionships into the right-hand-side of equation (17) yields two different algebraic equations for the
still unknown void fraction e0, which yield e0 = 0.4 for the Richardson and Zaki model, and
e0 = 0.437326 for the model of Gibilaro et al. When e0 is specified the model of Gibilaro et al.,
is completely defined, while for the other model one needs the index n, which for our experimental
conditions Eq. (7) yields as n = 3.07819.

The curves in Figs. 3 and 4 present pressure-velocity dependencies calculated for both models
and our experimental data. The lines represent the expressions of Richardson and Zaki, Ergun
and Gibilaro et al., respectively, while the points are our experimental data. In each figure one
can distinguish three curves forming a closed triangle. The horizontal constant pressure line de-
picts the fluidized state, while the curve with the monotonic increase in pressure describes the stage
of plug formation up to the inverted packed bed state. The last curve with the decreasing pressure
is for the unloading stage. The theories and the experiments indicate the hysteresis-type behavior
of the pressure-velocity plot.

One can see that qualitatively both models describe correctly the pressure-velocity relation dur-
ing the various stages that the confined bed is undergoing. Each model predicts the transition
from the initial fluidized stage, through the plug formation stage and to the final inverted packed
bed stage in a monotonic manner in agreement with the experimental data. In general, the com-
bination of the Richardson–Zaki and Ergun equations fits the experimental data better that the
expression of Gibilaro et al. Both theories fit the data quite well during the fluidization and the
unloading stages, while during the plug formation stage both theories underestimate the pressures
measured experimentally.

The measured terminal velocity shown in Fig. 3 is 9–12 m/s, while for the deeper inverted bed of
Fig. 4 it is 8–9.5 m/s. The velocity calculated from Eq. (6) is ut = 10.56 m/s, which is rather close
to the velocities measured experimentally. The slightly lower velocities for the deeper inverted bed
of Fig. 4 may indicate that in the shorter travel distance the particles may not have reached the
terminal velocity.
5. Conclusions

At small velocities (first stage) the confined bed operates in a regular fluidized bed regime and
the pressure drop across it is constant. At higher velocities (second stage) particles accumulate at
the upper grid and form a plug there. Further velocity increase creates inverted packed bed (third
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stage). In the course of unloading (reducing velocity) the pressure drop exceeds that prevailing
during velocity increase, exhibiting thus a hysteresis-type behavior.

Two variants of theoretical model of the confined bed were developed: one based on the cor-
relation of Richardson–Zaki and Ergun equation and the other—based on the Gibilaro et al.�s
correlation. Each model predicts the transition from the initial fluidized stage, through the plug
formation stage and to the final inverted packed bed stage in a monotonic manner in agreement
with the experimental data. Furthermore the models predict that the third stage of the inverted
packed bed begins when the superficial velocity u reaches the terminal velocity ut. This is in good
agreement with the experimental data presented in Fig. 4. In general, the combination of the Rich-
ardson–Zaki and Ergun equations fits the experimental data better that the model based on
expression of Gibilaro et al. Both theories fit the data quite well during the fluidization and the
unloading stages, while during the plug formation stage both theories underestimate the pressures
measured experimentally.
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